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Recall

1. Batch gradient descent

®* Randomly initialize 8%

® Based on the current parameter G(t) obtain

VJ (9(1)) ?‘j)g G(t) =n 12

(0

> L; : loss function associated with the ith training example

® Update parameter

o+ _ gt _ v 7 (gm)

® Go back to Step 2 until convergence



Recall

1. Disadvantages
® Computationally inefficient when n is large

2. Why not use part of the training examples for each iteration?



Mini-batch gradient descent

1. Idea: use part of training examples for each iteration

2. Partition the index set of training examples: {1,...,n} =57 U---U S}
* Sif = =[Sk-1| =m
® 1Sk <m
®* k= |n/m]

® m is usually a power of 2, in practice. For example, m = 512



Mini-batch gradient descent

1. For the tth iteration, update the model paramter by
o+ — g(t) _ (v 7, (g(t))

VI (09) = |Sua " Y SEO0)

1€ESt%k+1

® Only use training examples in S;q 41 to obtain the gradients

2. We finish one epoch when each training example is used



Discussion

1. Two special cases

Q1 =~ W IV

® m =1: stochastic gradient descent

® m = n: batch gradient descent

. Mini-batch gradient descent sacrifices accuracy when m < n
. Nevertheless, it saves memery and is computationally more efficient
. Commonly used in practice

. Next, we consider some efficient gradient descent algorithms.



Background

1. Gradient shows the fastest direction along which the cost function increases

2. It may causes problems, especially when the cost function is unstable

=
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Background

1. For gradient descent algorithms, replace gradients by possibly more efficient vectors

2. To achieve this goal, we introduce

® Momentum
® RMSprop
® Adam



Momentum

1. Ideally, we want to

® Decrease the up-down effect

® Increase the left-right effect
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Momentum

1. Taking mean might be good?

® Requires memory to store all the past gradients

® Impossible for deep learning models

2. Consider EWMA (Exponential Weighted Moving Average)

® Original sequence: {s; :7=1,2,...}

®* EWMA sequence: {v; :1=1,2,...}
V; = ,81’1)?1_1 a3 (1 = 51)8@ (’L — 1,,2? ;i s )

> ’UOZO

> 31 controls how much we stay with the “momentum” v;_4



Computation

L. Let g(t) be a gradient evaluated at the current parameter for the tth iteration

® It can be db or dW evaluated at the current parameter o)

® We ignore the superscript for layer for simplicity

2. Obtain the EWMA “oradient” 'vét) as follows
t t—1
v, = 1oy "V + (1 - B1)g®
® 31 =0.9: a hyperparameter, but seldom tuned

® ’Uéo) = (: 1mitial momentum



Computation

1. A fact

1 i
(1 — 51)_1 Z/@l =1

g=1
2. More details
v =BtV + (1 - B1)g"”

=(1—/51) f_lg(l) + (1 — 51)ﬁf_29(2) +oee (1 - Bl)g(t)

t
1 e
L § : n—i (1)
o . - Bl g
(1-61)7" i3

® When t is large, it is approximately weighted average

® (1 —p1)"': can be viewed as the “effective sample size” for EMWA



Momentum-based gradient descent algorithm

1. Randomly initialize )

2. Based on the current model parameter G(t), obtain dp!®)

® Take the update procedure for bl as an example

® The procedure applies to other parameters as well

3. Update

pILl(E+1) — L) _ qqp[NHD)

® v{[}l](Hl) _ 51U£1](t) + (1= [31)(1b[1](t)

® v{[}](n) _ 0

® (1 =0.9 by default

4. Go back to Step 2 until convergence

.......



Comparison

GD

Momentum
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Comparison

1. Momentum indeed decreases the variability in the up-down direction
2. Nevertheless, the convergence rate is slow

3. One possible solution: different learning rates for different directions

® Low learning rate for the up-down direction

® High learning rate for the left-right direction



RMSprop-based gradient descent algorithm

Step 1. Randomly initialize 0)

Stejp 2. Based on the current model parameter ), obtain db!®

® Take the update procedure for bl as an example

Step 3. Update

plllt+1) — plil(t) _ dplt ()

«
\/E + SE](H”
® €=10"% by default
® S!Ll](tJrl) _ ﬁzsg](t) L — 62)db[1](t) o dpll®)
3{)1](0) _ 0

®* 3y =0.99 by default

Stcp4 solGovback to Step 2 until convergenee vesen Algorithuns and Their Variations



Comparison

GD
Momentum

RMSprop
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Comparison

1. The path for RMSprop is more smooth

2. Nevertheless, the convergence rate is not that fast



Algorithms

1. Classical gradient descent algorithms

pltlt+1) _ plll®) _ ,aqpltl®)
2. Momentum only modifies the gradient part

plLl(t+1) _ pll(t) _ av([)l](tnLl)

3. RMSprop only modifies the learning rate part
plll(t+1) _ pl1l(®) = 4@
Jet slIED

4. Why not combine those two together?



Adam (Adaptive moment estimation)

L. Randomly initialize 6"

2. Based on the current model parameter 8%, obtain dp1®)

® Take the update procedure for bt as an example

3 Update

A [1](2+1)

plil(t+1) _ plil( o,

) @87
€ + \/ég](tﬂ)

® [1](t+1)

See next slide for s, and ;" (T

b
® €=10"° by default

4 Go back to Step 2 until convergence



Adam (Adaptive moment estimation)

L. Computation details for Aél](tﬂ) and 'ﬁl[)l](tﬂ)
[1](t+1) [1](¢) [1](t+1) sp Y
sl = B8t 4 (1 — Bg)dbm(t) o dpltl®) 8; =3 b —
— P2
I (t+1)
1] (t41 t 1](t41
UE[)](+) B’Ub ()_I_( B)db[l](t) £](+) 1_ t+1
* IO _ go) _ g

® 31 =0.9 by default
® B9 =0.99 by default



Comparison
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Comparison

1. Adam performs the best

2. Adam is commonly used in practice



Learning rate decay

1. Intuition

® As iteration goes, the parameters should get closer to the theoretical values

® It is inefficient to use the SAME learning rate for all iterations

> |Inefficient] Small learning rate guarantees good performance, but it takes longer to get conver

> [Unstable] A large learning rate leads to unstability when iteration index is large

® Actually, we should decrease the learning rate in a reasonable manner



Learning rate decay

1.

2

—

Denote

® {: iteration index

® epoch : epoch index

Several possible ways to decay the learning rate

®* ap=>5x10"" for example

® ~ =1 (by default)

07y

1+~ - epoch
e

v epoch

0.958P2CR . qyg

V¢

(Yt

oy =
1

&t_\/f 7))

a; = 0.95! - ay



