2-4 Gradient Descent Algorithms and Their Variations

Zhonglei Wang

WISE and SOE, XMU, 2025

Contents

1. Gradient descent algorithms

2. Variation

3. Learning rate decay

Recall

- 1. Batch gradient descent
 - Randomly initialize $\boldsymbol{\theta}^{(0)}$
 - Based on the current parameter $\boldsymbol{\theta}^{(t)}$, obtain

$$\nabla \mathcal{J}\left(\boldsymbol{\theta^{(t)}}\right) = \frac{\partial \mathcal{J}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta^{(t)}}) = \mathbf{n}^{-1} \sum_{i=1}^{\mathbf{n}} \frac{\partial \mathcal{L}_i}{\partial \boldsymbol{\theta}} \left(\boldsymbol{\theta^{(t)}}\right)$$

- \triangleright \mathcal{L}_i : loss function associated with the *i*th training example
- Update parameter

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla \mathcal{J} \left(\boldsymbol{\theta}^{(t)} \right)$$

• Go back to Step 2 until convergence

Recall

- 1. Disadvantages
 - Computationally inefficient when n is large
- 2. Why not use part of the training examples for each iteration?

Mini-batch gradient descent

- 1. Idea: use part of training examples for each iteration
- 2. Partition the index set of training examples: $\{1,\ldots,n\}=S_1\cup\cdots\cup S_k$
 - $|S_1| = \cdots = |S_{k-1}| = m$
 - $|S_k| \leq m$
 - $k = \lceil n/m \rceil$
 - m is usually a power of 2, in practice. For example, m = 512

Mini-batch gradient descent

1. For the tth iteration, update the model paramter by

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla \mathcal{J}_t \left(\boldsymbol{\theta}^{(t)}\right)$$

$$\nabla \mathcal{J}_t \left(\boldsymbol{\theta}^{(t)}\right) = |S_{t\%k+1}|^{-1} \sum_{i \in S_{t\%k+1}} \frac{\partial \mathcal{L}_i}{\partial \boldsymbol{\theta}} (\boldsymbol{\theta}^{(t)})$$

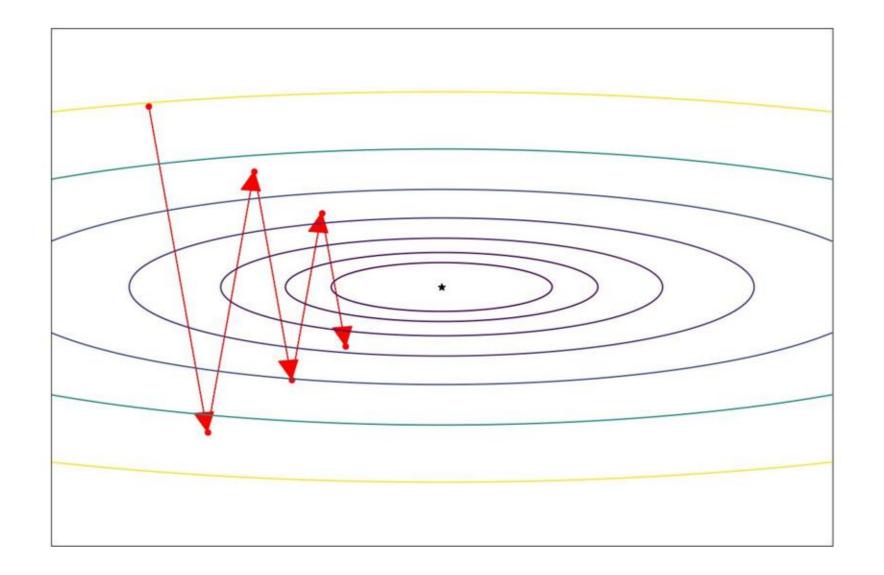
- Only use training examples in $S_{t\%k+1}$ to obtain the gradients
- 2. We finish one epoch when each training example is used

Discussion

- 1. Two special cases
 - m=1: stochastic gradient descent
 - m = n: batch gradient descent
- 2. Mini-batch gradient descent sacrifices accuracy when m < n
- 3. Nevertheless, it saves memery and is computationally more efficient
- 4. Commonly used in practice
- 5. Next, we consider some efficient gradient descent algorithms.

Background

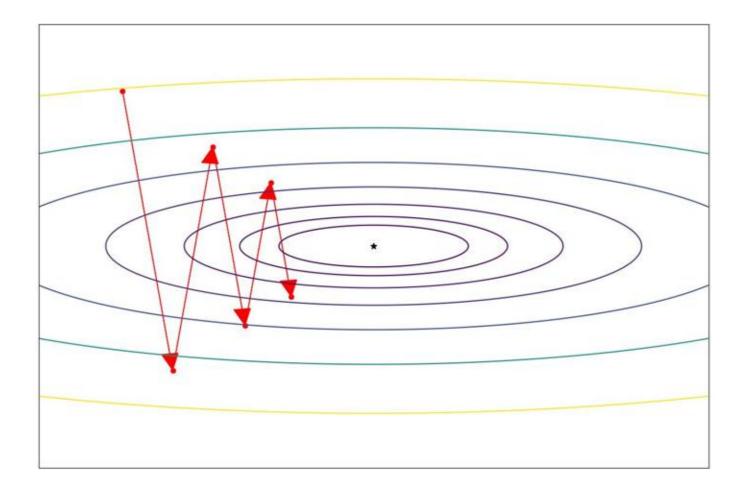
- 1. Gradient shows the fastest direction along which the cost function increases
- 2. It may causes problems, especially when the cost function is unstable



Background

- 1. For gradient descent algorithms, replace gradients by possibly more efficient vectors
- 2. To achieve this goal, we introduce
 - Momentum
 - RMSprop
 - Adam

Momentum



1. Ideally, we want to

- Decrease the up-down effect
- Increase the left-right effect

Momentum

- 1. Taking mean might be good?
 - Requires memory to store all the past gradients
 - Impossible for deep learning models
- 2. Consider EWMA (Exponential Weighted Moving Average)
 - Original sequence: $\{s_i : i = 1, 2, \ldots\}$
 - EWMA sequence: $\{v_i : i = 1, 2, ...\}$ $v_i = \beta_1 v_{i-1} + (1 - \beta_1) s_i \quad (i = 1, 2, ...)$
 - $\triangleright v_0 = 0$
 - \triangleright β_1 controls how much we stay with the "momentum" v_{i-1}

Computation

- 1. Let $g^{(t)}$ be a gradient evaluated at the current parameter for the tth iteration
 - It can be d**b** or d**W** evaluated at the current parameter $\boldsymbol{\theta}^{(t)}$
 - We ignore the superscript for layer for simplicity
- 2. Obtain the EWMA "gradient" $\boldsymbol{v}_b^{(t)}$ as follows

$$\mathbf{v}_b^{(t)} = \beta_1 \mathbf{v}_b^{(t-1)} + (1 - \beta_1) \mathbf{g}^{(t)}$$

- $\beta_1 = 0.9$: a hyperparameter, but seldom tuned
- $v_b^{(0)} = 0$: initial momentum

Computation

1. A fact

$$\frac{1}{(1-\beta_1)^{-1}} \sum_{i=1}^{\infty} \beta_1^i = 1$$

2. More details

$$\mathbf{v}^{(t)} = \beta_1 \mathbf{v}^{(t-1)} + (1 - \beta_1) \mathbf{g}^{(t)}$$

$$= (1 - \beta_1) \beta_1^{t-1} \mathbf{g}^{(1)} + (1 - \beta_1) \beta_1^{t-2} \mathbf{g}^{(2)} + \dots + (1 - \beta_1) \mathbf{g}^{(t)}$$

$$= \frac{1}{(1 - \beta_1)^{-1}} \sum_{i=1}^{t} \beta_1^{n-i} \mathbf{g}^{(i)}$$

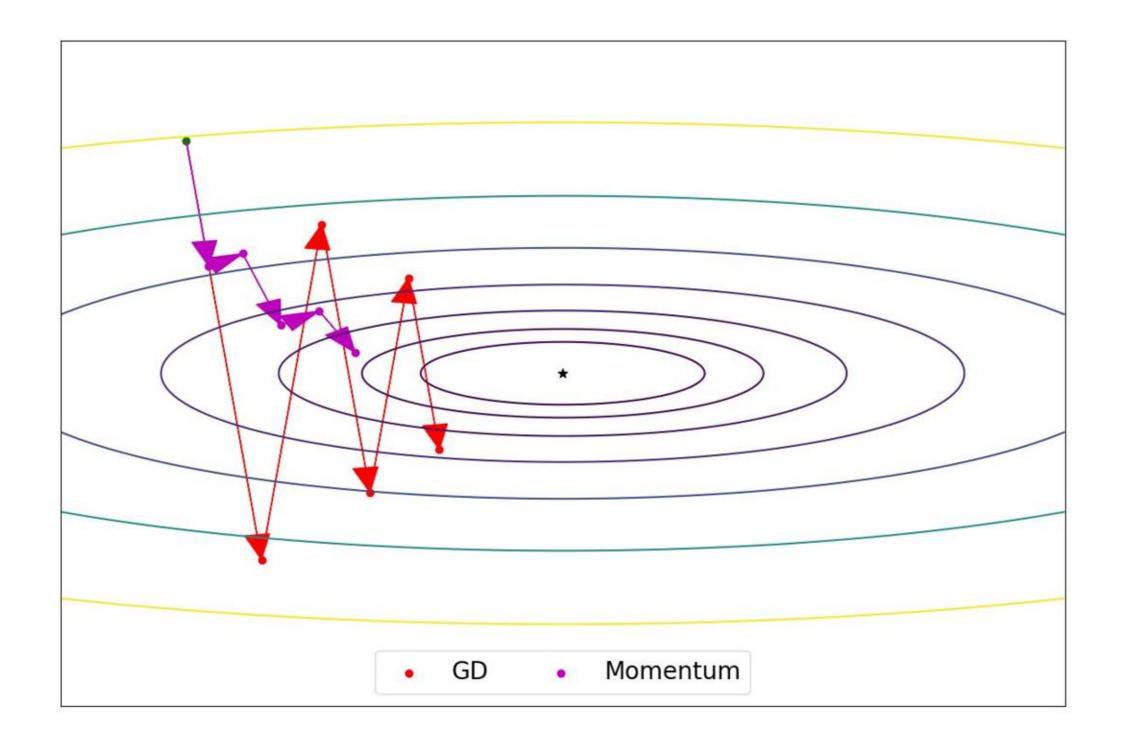
- When t is large, it is approximately weighted average
- $(1-\beta_1)^{-1}$: can be viewed as the "effective sample size" for EMWA

Momentum-based gradient descent algorithm

- 1. Randomly initialize $\boldsymbol{\theta}^{(0)}$
- 2. Based on the current model parameter $\boldsymbol{\theta}^{(t)}$, obtain $d\boldsymbol{b}^{[1](t)}$
 - Take the update procedure for $\boldsymbol{b}^{[1]}$ as an example
 - The procedure applies to other parameters as well
- 3. Update

$$\boldsymbol{b}^{[1](t+1)} = \boldsymbol{b}^{[1](t)} - \alpha \boldsymbol{v}_{\boldsymbol{b}}^{[1](t+1)}$$

- $v_b^{[1](t+1)} = \beta_1 v_b^{[1](t)} + (1 \beta_1) db^{[1](t)}$
- $\mathbf{v}_b^{[1](0)} = 0$
- $\beta_1 = 0.9$ by default
- 4. Go back to Step 2 until convergence



- 1. Momentum indeed decreases the variability in the up-down direction
- 2. Nevertheless, the convergence rate is slow
- 3. One possible solution: different learning rates for different directions
 - Low learning rate for the up-down direction
 - High learning rate for the left-right direction

RMSprop-based gradient descent algorithm

Step 1. Randomly initialize $\theta^{(0)}$

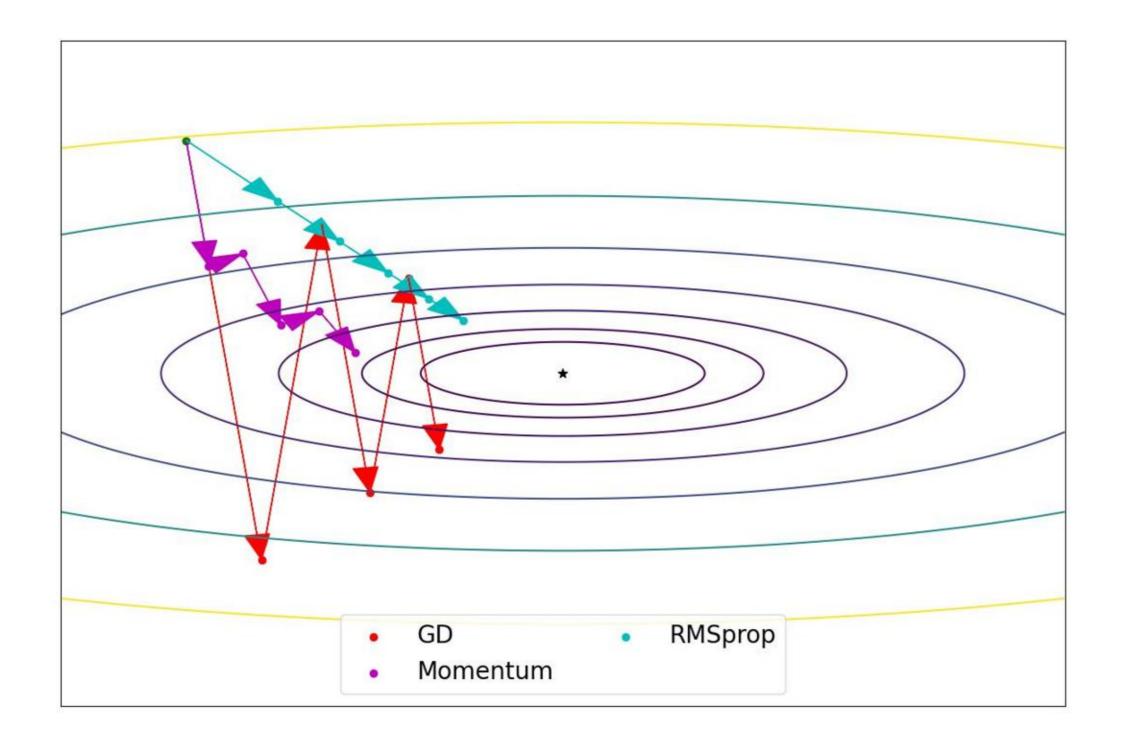
Step 2. Based on the current model parameter $\boldsymbol{\theta}^{(t)}$, obtain $d\boldsymbol{b}^{[1](t)}$

• Take the update procedure for $\boldsymbol{b}^{[1]}$ as an example

Step 3. Update

$$m{b}^{[1](t+1)} = m{b}^{[1](t)} - rac{lpha}{\sqrt{\epsilon + m{s}_b^{[1](t+1)}}} \mathbf{d}m{b}^{[1](t)}$$

- $\epsilon = 10^{-8}$ by default
- $s_b^{[1](t+1)} = \beta_2 s_b^{[1](t)} + (1 \beta_2) db^{[1](t)} \circ db^{[1](t)}$
- $\mathbf{s}_b^{[1](0)} = 0$
- $\beta_2 = 0.99$ by default



- 1. The path for RMSprop is more smooth
- 2. Nevertheless, the convergence rate is not that fast

Algorithms

1. Classical gradient descent algorithms

$$\boldsymbol{b}^{[1](t+1)} = \boldsymbol{b}^{[1](t)} - \alpha d \boldsymbol{b}^{[1](t)}$$

2. Momentum only modifies the gradient part

$$\boldsymbol{b}^{[1](t+1)} = \boldsymbol{b}^{[1](t)} - \alpha \boldsymbol{v}_{\boldsymbol{b}}^{[1](t+1)}$$

3. RMSprop only modifies the learning rate part

$$b^{[1](t+1)} = b^{[1](t)} - \frac{\alpha}{\sqrt{\epsilon + s_b^{[1](t+1)}}} db^{[1](t)}$$

4. Why not combine those two together?

Adam (Adaptive moment estimation)

- 1. Randomly initialize $\boldsymbol{\theta}^{(0)}$
- 2. Based on the current model parameter $\boldsymbol{\theta}^{(t)}$, obtain $d\boldsymbol{b}^{[1](t)}$
 - Take the update procedure for $\boldsymbol{b}^{[1]}$ as an example
- 3. Update

$$m{b}^{[1](t+1)} = m{b}^{[1](t)} - rac{lpha}{\epsilon + \sqrt{\hat{m{s}}_b^{[1](t+1)}}} \hat{m{v}}_b^{[1](t+1)}$$

- See next slide for $\hat{\boldsymbol{s}}_b^{[1](t+1)}$ and $\hat{\boldsymbol{v}}_b^{[1](t+1)}$
- $\epsilon = 10^{-8}$ by default
- 4. Go back to Step 2 until convergence

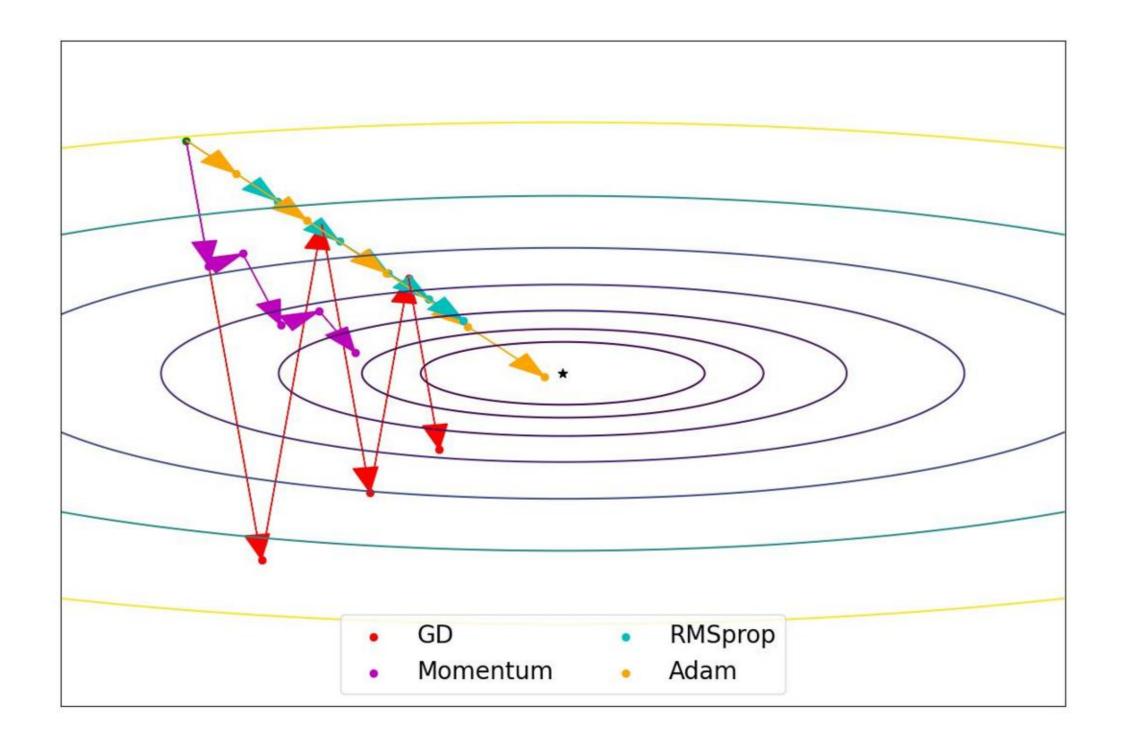
Adam (Adaptive moment estimation)

1. Computation details for $\hat{\boldsymbol{s}}_b^{[1](t+1)}$ and $\hat{\boldsymbol{v}}_b^{[1](t+1)}$

$$\mathbf{s}_b^{[1](t+1)} = \beta_2 \mathbf{s}_b^{[1](t)} + (1 - \beta_2) d\mathbf{b}^{[1](t)} \circ d\mathbf{b}^{[1](t)} \quad \hat{\mathbf{s}}_b^{[1](t+1)} = \frac{\mathbf{s}_b^{[1](t+1)}}{1 - \beta_2^{t+1}}$$

$$\mathbf{v}_b^{[1](t+1)} = \beta_1 \mathbf{v}_b^{[1](t)} + (1 - \beta_1) d\mathbf{b}^{[1](t)} \quad \hat{\mathbf{v}}_b^{[1](t+1)} = \frac{\mathbf{v}_b^{[1](t+1)}}{1 - \beta_1^{t+1}}$$

- $\mathbf{v}_b^{[1](0)} = \mathbf{s}_b^{[1](0)} = 0$
- $\beta_1 = 0.9$ by default
- $\beta_2 = 0.99$ by default



- 1. Adam performs the best
- 2. Adam is commonly used in practice

Learning rate decay

1. Intuition

- As iteration goes, the parameters should get closer to the theoretical values
- It is inefficient to use the SAME learning rate for all iterations
 - [Inefficient] Small learning rate guarantees good performance, but it takes longer to get conver
 - Unstable A large learning rate leads to unstability when iteration index is large
- Actually, we should decrease the learning rate in a reasonable manner

Learning rate decay

- 1. Denote
 - \bullet t: iteration index
 - *epoch* : epoch index
- 2. Several possible ways to decay the learning rate

$$\alpha_t = \frac{\alpha_0}{1 + \gamma \cdot epoch}$$

$$\alpha_t = \frac{\alpha_0}{\sqrt{epoch}}$$

$$\alpha_t = 0.95^{epoch} \cdot \alpha_0$$

$$\alpha_t = \frac{1}{\sqrt{t}} \cdot \alpha_0$$

$$\alpha_t = 0.95^t \cdot \alpha_0$$

- $\alpha_0 = 5 \times 10^{-3}$ for example
- $\gamma = 1$ (by default)